logo
  • Home
  • User Guide
  • NumPy Reference
  • Contributing to NumPy
  • Release Notes
  • About NumPy
  • Reporting bugs
  • Glossary
  • Array objects
  • Constants
  • Universal functions (ufunc)
  • Routines
    • Array creation routines
    • Array manipulation routines
    • Binary operations
    • String operations
    • C-Types Foreign Function Interface (numpy.ctypeslib)
    • Datetime Support Functions
    • Data type routines
    • Optionally Scipy-accelerated routines (numpy.dual)
    • Mathematical functions with automatic domain (numpy.emath)
    • Floating point error handling
    • Discrete Fourier Transform (numpy.fft)
    • Financial functions
    • Functional programming
    • NumPy-specific help functions
    • Indexing routines
    • Input and output
    • Linear algebra (numpy.linalg)
    • Logic functions
    • Masked array operations
    • Mathematical functions
    • Matrix library (numpy.matlib)
    • Miscellaneous routines
    • Padding Arrays
    • Polynomials
    • Random sampling (numpy.random)
    • Set routines
    • Sorting, searching, and counting
    • Statistics
    • Test Support (numpy.testing)
    • Window functions
  • Packaging (numpy.distutils)
  • NumPy Distutils - Users Guide
  • NumPy C-API
  • NumPy internals
  • NumPy and SWIG

Polynomial Package¶

New in version 1.4.0.

  • Using the Convenience Classes
    • Basics
    • Calculus
    • Other Polynomial Constructors
    • Fitting
  • Polynomial Module (numpy.polynomial.polynomial)
    • Polynomial Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Miscellaneous
  • Chebyshev Module (numpy.polynomial.chebyshev)
    • Chebyshev Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Quadrature
    • Miscellaneous
  • Legendre Module (numpy.polynomial.legendre)
    • Legendre Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Quadrature
    • Miscellaneous
  • Laguerre Module (numpy.polynomial.laguerre)
    • Laguerre Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Quadrature
    • Miscellaneous
  • Hermite Module, “Physicists’” (numpy.polynomial.hermite)
    • Hermite Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Quadrature
    • Miscellaneous
  • HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)
    • HermiteE Class
    • Basics
    • Fitting
    • Calculus
    • Algebra
    • Quadrature
    • Miscellaneous
  • Polyutils
    • Error objects
    • Warning objects
    • Base class
    • Functions
Polynomials Using the Convenience Classes
© Copyright 2008-2019, The SciPy community. Last updated on Nov 29, 2019. Created using Sphinx 2.2.1.
NumPy logo

NumPy is the fundamental package needed for scientific computing with Python.

  • Mailing list

About us

  • Our history
  • Ecosystem
  • Roadmap
  • Team

Community

  • Blog
  • Contributing
  • Code of conduct
  • Community survey

Learning & Documentation

  • User guide
  • API reference
  • Release notes
  • Tutorials
  • Videos
  • Books
  • Courses

© NumPy Developers