logo
  • Home
  • User Guide
  • NumPy Reference
  • Contributing to NumPy
  • Release Notes
  • About NumPy
  • Reporting bugs
  • Glossary
  • Array objects
    • The N-dimensional array (ndarray)
    • Scalars
    • Data type objects (dtype)
    • Indexing
    • Iterating Over Arrays
    • Standard array subclasses
    • Masked arrays
    • The Array Interface
    • Datetimes and Timedeltas
  • Constants
  • Universal functions (ufunc)
  • Routines
  • Packaging (numpy.distutils)
  • NumPy Distutils - Users Guide
  • NumPy C-API
  • NumPy internals
  • NumPy and SWIG

Masked arraysΒΆ

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike replacement for numpy that supports data arrays with masks.

  • The numpy.ma module
    • Rationale
    • What is a masked array?
    • The numpy.ma module
  • Using numpy.ma
    • Constructing masked arrays
    • Accessing the data
    • Accessing the mask
    • Accessing only the valid entries
    • Modifying the mask
    • Indexing and slicing
    • Operations on masked arrays
  • Examples
    • Data with a given value representing missing data
    • Filling in the missing data
    • Numerical operations
    • Ignoring extreme values
  • Constants of the numpy.ma module
  • The MaskedArray class
    • Attributes and properties of masked arrays
  • MaskedArray methods
    • Conversion
    • Shape manipulation
    • Item selection and manipulation
    • Pickling and copy
    • Calculations
    • Arithmetic and comparison operations
    • Representation
    • Special methods
    • Specific methods
  • Masked array operations
    • Constants
    • Creation
    • Inspecting the array
    • Manipulating a MaskedArray
    • Operations on masks
    • Conversion operations
    • Masked arrays arithmetics
numpy.broadcast.reset The numpy.ma module
© Copyright 2008-2019, The SciPy community. Last updated on Nov 29, 2019. Created using Sphinx 2.2.1.
NumPy logo

NumPy is the fundamental package needed for scientific computing with Python.

  • Mailing list

About us

  • Our history
  • Ecosystem
  • Roadmap
  • Team

Community

  • Blog
  • Contributing
  • Code of conduct
  • Community survey

Learning & Documentation

  • User guide
  • API reference
  • Release notes
  • Tutorials
  • Videos
  • Books
  • Courses

© NumPy Developers