numpy.ma.
vstack
Stack arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N). Rebuilds arrays divided by vsplit. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.
Stack arrays in sequence vertically (row wise).
This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N). Rebuilds arrays divided by vsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.
concatenate
stack
The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length.
The array formed by stacking the given arrays, will be at least 2-D.
See also
Join a sequence of arrays along a new axis.
hstack
Stack arrays in sequence horizontally (column wise).
dstack
Stack arrays in sequence depth wise (along third dimension).
Join a sequence of arrays along an existing axis.
vsplit
Split array into a list of multiple sub-arrays vertically.
block
Assemble arrays from blocks.
Notes
The function is applied to both the _data and the _mask, if any.
Examples
>>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]])
>>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]])