Tensors¶
Dense Tensors¶
-
class
arrow
::
Tensor
¶ Subclassed by arrow::NumericTensor< TYPE >
Public Functions
Constructor with no dimension names or strides, data assumed to be row-major.
Constructor with non-negative strides.
Constructor with non-negative strides and dimension names.
-
int64_t
size
() const¶ Total number of value cells in the tensor.
-
bool
is_mutable
() const¶ Return true if the underlying data buffer is mutable.
-
bool
is_contiguous
() const¶ Either row major or column major.
-
bool
is_row_major
() const¶ AKA “C order”.
-
bool
is_column_major
() const¶ AKA “Fortran order”.
Public Static Functions
Create a Tensor with full parameters.
This factory function will return Status::Invalid when the parameters are inconsistent
- Parameters
[in] type
: The data type of the tensor values[in] data
: The buffer of the tensor content[in] shape
: The shape of the tensor[in] strides
: The strides of the tensor (if this is empty, the data assumed to be row-major)[in] dim_names
: The names of the tensor dimensions
-
int64_t
CalculateValueOffset
(const std::vector<int64_t> &strides, const std::vector<int64_t> &index)¶ Return the offset of the given index on the given strides.
-
template<typename
TYPE
>
classarrow
::
NumericTensor
: public arrow::Tensor¶ Public Functions
Constructor with non-negative strides and dimension names.
Constructor with no dimension names or strides, data assumed to be row-major.
Constructor with non-negative strides.
Public Static Functions
Create a NumericTensor with full parameters.
This factory function will return Status::Invalid when the parameters are inconsistent
- Parameters
[in] data
: The buffer of the tensor content[in] shape
: The shape of the tensor[in] strides
: The strides of the tensor (if this is empty, the data assumed to be row-major)[in] dim_names
: The names of the tensor dimensions
Sparse Tensors¶
-
enum
arrow::SparseTensorFormat
::
type
¶ EXPERIMENTAL: The index format type of SparseTensor.
Values:
-
enumerator
COO
¶ Coordinate list (COO) format.
-
enumerator
CSR
¶ Compressed sparse row (CSR) format.
-
enumerator
CSC
¶ Compressed sparse column (CSC) format.
-
enumerator
CSF
¶ Compressed sparse fiber (CSF) format.
-
enumerator
-
class
arrow
::
SparseIndex
¶ EXPERIMENTAL: The base class for the index of a sparse tensor.
SparseIndex describes where the non-zero elements are within a SparseTensor.
There are several ways to represent this. The format_id is used to distinguish what kind of representation is used. Each possible value of format_id must have only one corresponding concrete subclass of SparseIndex.
Subclassed by arrow::internal::SparseIndexBase< SparseIndexType >, arrow::internal::SparseIndexBase< SparseCOOIndex >, arrow::internal::SparseIndexBase< SparseCSCIndex >, arrow::internal::SparseIndexBase< SparseCSFIndex >, arrow::internal::SparseIndexBase< SparseCSRIndex >
-
class
arrow
::
SparseCOOIndex
: public arrow::internal::SparseIndexBase<SparseCOOIndex>¶ EXPERIMENTAL: The index data for a COO sparse tensor.
A COO sparse index manages the location of its non-zero values by their coordinates.
Public Functions
Construct SparseCOOIndex from column-major NumericTensor.
-
const std::shared_ptr<Tensor> &
indices
() const¶ Return a tensor that has the coordinates of the non-zero values.
The returned tensor is a N x D tensor where N is the number of non-zero values and D is the number of dimensions in the logical data. The column at index
i
is a D-tuple of coordinates indicating that the logical value at those coordinates should be found at physical indexi
.
-
int64_t
non_zero_length
() const override¶ Return the number of non zero values in the sparse tensor related to this sparse index.
-
bool
is_canonical
() const¶ Return whether a sparse tensor index is canonical, or not.
If a sparse tensor index is canonical, it is sorted in the lexicographical order, and the corresponding sparse tensor doesn’t have duplicated entries.
-
std::string
ToString
() const override¶ Return a string representation of the sparse index.
-
bool
Equals
(const SparseCOOIndex &other) const¶ Return whether the COO indices are equal.
Public Static Functions
Make SparseCOOIndex from a coords tensor and canonicality.
Make SparseCOOIndex from a coords tensor with canonicality auto-detection.
Make SparseCOOIndex from raw properties with canonicality auto-detection.
Make SparseCOOIndex from raw properties.
Make SparseCOOIndex from sparse tensor’s shape properties and data with canonicality auto-detection.
The indices_data should be in row-major (C-like) order. If not, use the raw properties constructor.
Make SparseCOOIndex from sparse tensor’s shape properties and data.
The indices_data should be in row-major (C-like) order. If not, use the raw properties constructor.
-
class
SparseCSRIndex
: public arrow::internal::SparseCSXIndex<SparseCSRIndex, internal::SparseMatrixCompressedAxis::ROW>¶ EXPERIMENTAL: The index data for a CSR sparse matrix.
A CSR sparse index manages the location of its non-zero values by two vectors.
The first vector, called indptr, represents the range of the rows; the i-th row spans from indptr[i] to indptr[i+1] in the corresponding value vector. So the length of an indptr vector is the number of rows + 1.
The other vector, called indices, represents the column indices of the corresponding non-zero values. So the length of an indices vector is same as the number of non-zero-values.
-
class
arrow
::
SparseTensor
¶ EXPERIMENTAL: The base class of sparse tensor container.
Subclassed by arrow::SparseTensorImpl< SparseIndexType >
Public Functions
-
std::shared_ptr<Buffer>
data
() const¶ Return a buffer that contains the value vector of the sparse tensor.
-
const uint8_t *
raw_data
() const¶ Return an immutable raw data pointer.
-
uint8_t *
raw_mutable_data
() const¶ Return a mutable raw data pointer.
-
const std::vector<int64_t> &
shape
() const¶ Return a shape vector of the sparse tensor.
-
const std::shared_ptr<SparseIndex> &
sparse_index
() const¶ Return a sparse index of the sparse tensor.
-
int
ndim
() const¶ Return a number of dimensions of the sparse tensor.
-
const std::vector<std::string> &
dim_names
() const¶ Return a vector of dimension names.
-
const std::string &
dim_name
(int i) const¶ Return the name of the i-th dimension.
-
int64_t
size
() const¶ Total number of value cells in the sparse tensor.
-
bool
is_mutable
() const¶ Return true if the underlying data buffer is mutable.
-
int64_t
non_zero_length
() const¶ Total number of non-zero cells in the sparse tensor.
-
bool
Equals
(const SparseTensor &other, const EqualOptions& = EqualOptions::Defaults()) const¶ Return whether sparse tensors are equal.
-
Result<std::shared_ptr<Tensor>>
ToTensor
(MemoryPool *pool) const¶ Return dense representation of sparse tensor as tensor.
The returned Tensor has row-major order (C-like).
Status-return version of ToTensor().
-
std::shared_ptr<Buffer>
-
template<typename
SparseIndexType
>
classarrow
::
SparseTensorImpl
: public arrow::SparseTensor¶ EXPERIMENTAL: Concrete sparse tensor implementation classes with sparse index type.
Public Functions
Construct a sparse tensor from physical data buffer and logical index.
Construct an empty sparse tensor.
Public Static Functions
Create a SparseTensor with full parameters.
Create a sparse tensor from a dense tensor.
The dense tensor is re-encoded as a sparse index and a physical data buffer for the non-zero value.
-
using
arrow
::
SparseCOOTensor
= SparseTensorImpl<SparseCOOIndex>¶ EXPERIMENTAL: Type alias for COO sparse tensor.
-
using
arrow
::
SparseCSRMatrix
= SparseTensorImpl<SparseCSRIndex>¶ EXPERIMENTAL: Type alias for CSR sparse matrix.