These are the changes in pandas 1.0.0. See Release Notes for a full changelog including other versions of pandas.
Note
The pandas 1.0 release removed a lot of functionality that was deprecated in previous releases (see below for an overview). It is recommended to first upgrade to pandas 0.25 and to ensure your code is working without warnings, before upgrading to pandas 1.0.
Starting with Pandas 1.0.0, pandas will adopt a variant of SemVer to version releases. Briefly,
Deprecations will be introduced in minor releases (e.g. 1.1.0, 1.2.0, 2.1.0, …)
Deprecations will be enforced in major releases (e.g. 1.0.0, 2.0.0, 3.0.0, …)
API-breaking changes will be made only in major releases (except for experimental features)
See Version Policy for more.
NA
A new pd.NA value (singleton) is introduced to represent scalar missing values. Up to now, pandas used several values to represent missing data: np.nan is used for this for float data, np.nan or None for object-dtype data and pd.NaT for datetime-like data. The goal of pd.NA is to provide a “missing” indicator that can be used consistently across data types. pd.NA is currently used by the nullable integer and boolean data types and the new string data type (GH28095).
pd.NA
np.nan
None
pd.NaT
Warning
Experimental: the behaviour of pd.NA can still change without warning.
For example, creating a Series using the nullable integer dtype:
In [1]: s = pd.Series([1, 2, None], dtype="Int64") In [2]: s Out[2]: 0 1 1 2 2 <NA> Length: 3, dtype: Int64 In [3]: s[2] Out[3]: <NA>
Compared to np.nan, pd.NA behaves differently in certain operations. In addition to arithmetic operations, pd.NA also propagates as “missing” or “unknown” in comparison operations:
In [4]: np.nan > 1 Out[4]: False In [5]: pd.NA > 1 Out[5]: <NA>
For logical operations, pd.NA follows the rules of the three-valued logic (or Kleene logic). For example:
In [6]: pd.NA | True Out[6]: True
For more, see NA section in the user guide on missing data.
We’ve added StringDtype, an extension type dedicated to string data. Previously, strings were typically stored in object-dtype NumPy arrays. (GH29975)
StringDtype
StringDtype is currently considered experimental. The implementation and parts of the API may change without warning.
The 'string' extension type solves several issues with object-dtype NumPy arrays:
'string'
You can accidentally store a mixture of strings and non-strings in an object dtype array. A StringArray can only store strings.
object
StringArray
object dtype breaks dtype-specific operations like DataFrame.select_dtypes(). There isn’t a clear way to select just text while excluding non-text, but still object-dtype columns.
DataFrame.select_dtypes()
When reading code, the contents of an object dtype array is less clear than string.
string
In [7]: pd.Series(['abc', None, 'def'], dtype=pd.StringDtype()) Out[7]: 0 abc 1 <NA> 2 def Length: 3, dtype: string
You can use the alias "string" as well.
"string"
In [8]: s = pd.Series(['abc', None, 'def'], dtype="string") In [9]: s Out[9]: 0 abc 1 <NA> 2 def Length: 3, dtype: string
The usual string accessor methods work. Where appropriate, the return type of the Series or columns of a DataFrame will also have string dtype.
In [10]: s.str.upper() Out[10]: 0 ABC 1 <NA> 2 DEF Length: 3, dtype: string In [11]: s.str.split('b', expand=True).dtypes Out[11]: 0 string 1 string Length: 2, dtype: object
String accessor methods returning integers will return a value with Int64Dtype
Int64Dtype
In [12]: s.str.count("a") Out[12]: 0 1 1 <NA> 2 0 Length: 3, dtype: Int64
We recommend explicitly using the string data type when working with strings. See Text Data Types for more.
We’ve added BooleanDtype / BooleanArray, an extension type dedicated to boolean data that can hold missing values. The default bool data type based on a bool-dtype NumPy array, the column can only hold True or False, and not missing values. This new BooleanArray can store missing values as well by keeping track of this in a separate mask. (GH29555, GH30095)
BooleanDtype
BooleanArray
bool
True
False
In [13]: pd.Series([True, False, None], dtype=pd.BooleanDtype()) Out[13]: 0 True 1 False 2 <NA> Length: 3, dtype: boolean
You can use the alias "boolean" as well.
"boolean"
In [14]: s = pd.Series([True, False, None], dtype="boolean") In [15]: s Out[15]: 0 True 1 False 2 <NA> Length: 3, dtype: boolean
rolling.apply
expanding.apply
We’ve added an engine keyword to apply() and apply() that allows the user to execute the routine using Numba instead of Cython. Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and the data set is larger (1 million rows or greater). For more details, see rolling apply documentation (GH28987, GH30936)
engine
apply()
We’ve added a pandas.api.indexers.BaseIndexer() class that allows users to define how window bounds are created during rolling operations. Users can define their own get_window_bounds method on a pandas.api.indexers.BaseIndexer() subclass that will generate the start and end indices used for each window during the rolling aggregation. For more details and example usage, see the custom window rolling documentation
pandas.api.indexers.BaseIndexer()
rolling
get_window_bounds
We’ve added to_markdown() for creating a markdown table (GH11052)
to_markdown()
In [16]: df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=['a', 'a', 'b']) In [17]: print(df.to_markdown()) --------------------------------------------------------------------------- ImportError Traceback (most recent call last) <ipython-input-17-e77d76dce8ec> in <module> ----> 1 print(df.to_markdown()) ~/scipy/pandas/pandas/core/frame.py in to_markdown(self, buf, mode, **kwargs) 2015 kwargs.setdefault("headers", "keys") 2016 kwargs.setdefault("tablefmt", "pipe") -> 2017 tabulate = import_optional_dependency("tabulate") 2018 result = tabulate.tabulate(self, **kwargs) 2019 if buf is None: ~/scipy/pandas/pandas/compat/_optional.py in import_optional_dependency(name, extra, raise_on_missing, on_version) 89 except ImportError: 90 if raise_on_missing: ---> 91 raise ImportError(msg) from None 92 else: 93 return None ImportError: Missing optional dependency 'tabulate'. Use pip or conda to install tabulate.
DataFrame.to_string() added the max_colwidth parameter to control when wide columns are truncated (GH9784)
DataFrame.to_string()
max_colwidth
Added the na_value argument to Series.to_numpy(), Index.to_numpy() and DataFrame.to_numpy() to control the value used for missing data (GH30322)
na_value
Series.to_numpy()
Index.to_numpy()
DataFrame.to_numpy()
MultiIndex.from_product() infers level names from inputs if not explicitly provided (GH27292)
MultiIndex.from_product()
DataFrame.to_latex() now accepts caption and label arguments (GH25436)
DataFrame.to_latex()
caption
label
The integer dtype with support for missing values and the new string dtype can now be converted to pyarrow (>= 0.15.0), which means that it is supported in writing to the Parquet file format when using the pyarrow engine. It is currently not yet supported when converting back to pandas, so it will become an integer or float (depending on the presence of missing data) or object dtype column. (GH28368)
pyarrow
DataFrame.to_json() now accepts an indent integer argument to enable pretty printing of JSON output (GH12004)
DataFrame.to_json()
indent
read_stata() can read Stata 119 dta files. (GH28250)
read_stata()
Implemented pandas.core.window.Window.var() and pandas.core.window.Window.std() functions (GH26597)
pandas.core.window.Window.var()
pandas.core.window.Window.std()
Added encoding argument to DataFrame.to_string() for non-ascii text (GH28766)
encoding
Added encoding argument to DataFrame.to_html() for non-ascii text (GH28663)
DataFrame.to_html()
Styler.background_gradient() now accepts vmin and vmax arguments (GH12145)
Styler.background_gradient()
vmin
vmax
Styler.format() added the na_rep parameter to help format the missing values (GH21527, GH28358)
Styler.format()
na_rep
Roundtripping DataFrames with nullable integer, string and period data types to parquet (to_parquet() / read_parquet()) using the ‘pyarrow’ engine now preserve those data types with pyarrow >= 0.16.0 (GH20612, GH28371).
to_parquet()
read_parquet()
The partition_cols argument in DataFrame.to_parquet() now accepts a string (GH27117)
partition_cols
DataFrame.to_parquet()
pandas.read_json() now parses NaN, Infinity and -Infinity (GH12213)
pandas.read_json()
NaN
Infinity
-Infinity
to_parquet() now appropriately handles the schema argument for user defined schemas in the pyarrow engine. (GH30270)
schema
DataFrame constructor preserve ExtensionArray dtype with ExtensionArray (GH11363)
DataFrame.sort_values() and Series.sort_values() have gained ignore_index keyword to be able to reset index after sorting (GH30114)
DataFrame.sort_values()
Series.sort_values()
ignore_index
DataFrame.sort_index() and Series.sort_index() have gained ignore_index keyword to reset index (GH30114)
DataFrame.sort_index()
Series.sort_index()
DataFrame.drop_duplicates() has gained ignore_index keyword to reset index (GH30114)
DataFrame.drop_duplicates()
Added new writer for exporting Stata dta files in versions 118 and 119, StataWriterUTF8. These files formats support exporting strings containing Unicode characters. Format 119 supports data sets with more than 32,767 variables (GH23573, GH30959)
StataWriterUTF8
Series.map() now accepts collections.abc.Mapping subclasses as a mapper (GH29733)
Series.map()
collections.abc.Mapping
Added an experimental attrs for storing global metadata about a dataset (GH29062)
attrs
Timestamp.fromisocalendar() is now compatible with python 3.8 and above (GH28115)
Timestamp.fromisocalendar()
DataFrame.to_pickle() and read_pickle() now accept URL (GH30163)
DataFrame.to_pickle()
read_pickle()
Pandas has added a pyproject.toml file and will no longer include cythonized files in the source distribution uploaded to PyPI (GH28341, GH20775). If you’re installing a built distribution (wheel) or via conda, this shouldn’t have any effect on you. If you’re building pandas from source, you should no longer need to install Cython into your build environment before calling pip install pandas.
pip install pandas
MultiIndex.levels
As part of a larger refactor to MultiIndex the level names are now stored separately from the levels (GH27242). We recommend using MultiIndex.names to access the names, and Index.set_names() to update the names.
MultiIndex
MultiIndex.names
Index.set_names()
For backwards compatibility, you can still access the names via the levels.
In [18]: mi = pd.MultiIndex.from_product([[1, 2], ['a', 'b']], names=['x', 'y']) In [19]: mi.levels[0].name Out[19]: 'x'
However, it is no longer possible to update the names of the MultiIndex via the level.
In [20]: mi.levels[0].name = "new name" --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-20-65f4400a0c97> in <module> ----> 1 mi.levels[0].name = "new name" ~/scipy/pandas/pandas/core/indexes/base.py in name(self, value) 1168 # Used in MultiIndex.levels to avoid silently ignoring name updates. 1169 raise RuntimeError( -> 1170 "Cannot set name on a level of a MultiIndex. Use " 1171 "'MultiIndex.set_names' instead." 1172 ) RuntimeError: Cannot set name on a level of a MultiIndex. Use 'MultiIndex.set_names' instead. In [21]: mi.names Out[21]: FrozenList(['x', 'y'])
To update, use MultiIndex.set_names, which returns a new MultiIndex.
MultiIndex.set_names
In [22]: mi2 = mi.set_names("new name", level=0) In [23]: mi2.names Out[23]: FrozenList(['new name', 'y'])
IntervalArray
pandas.arrays.IntervalArray adopts a new __repr__ in accordance with other array classes (GH25022)
pandas.arrays.IntervalArray
__repr__
pandas 0.25.x
In [1]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)]) Out[2]: IntervalArray([(0, 1], (2, 3]], closed='right', dtype='interval[int64]')
pandas 1.0.0
In [24]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)]) Out[24]: <IntervalArray> [(0, 1], (2, 3]] Length: 2, closed: right, dtype: interval[int64]
DataFrame.rename
DataFrame.rename() would previously accept positional arguments that would lead to ambiguous or undefined behavior. From pandas 1.0, only the very first argument, which maps labels to their new names along the default axis, is allowed to be passed by position (GH29136).
DataFrame.rename()
In [1]: df = pd.DataFrame([[1]]) In [2]: df.rename({0: 1}, {0: 2}) FutureWarning: ...Use named arguments to resolve ambiguity... Out[2]: 2 1 1
In [25]: df.rename({0: 1}, {0: 2}) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-25-54a18e8b95ea> in <module> ----> 1 df.rename({0: 1}, {0: 2}) ~/scipy/pandas/pandas/util/_decorators.py in wrapper(*args, **kwargs) 225 @wraps(func) 226 def wrapper(*args, **kwargs) -> Callable[..., Any]: --> 227 return func(*args, **kwargs) 228 229 kind = inspect.Parameter.POSITIONAL_OR_KEYWORD TypeError: rename() takes from 1 to 2 positional arguments but 3 were given
Note that errors will now be raised when conflicting or potentially ambiguous arguments are provided.
In [1]: df.rename({0: 1}, index={0: 2}) Out[1]: 0 1 1 In [2]: df.rename(mapper={0: 1}, index={0: 2}) Out[2]: 0 2 1
In [26]: df.rename({0: 1}, index={0: 2}) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-26-1a71547ba05e> in <module> ----> 1 df.rename({0: 1}, index={0: 2}) ~/scipy/pandas/pandas/util/_decorators.py in wrapper(*args, **kwargs) 225 @wraps(func) 226 def wrapper(*args, **kwargs) -> Callable[..., Any]: --> 227 return func(*args, **kwargs) 228 229 kind = inspect.Parameter.POSITIONAL_OR_KEYWORD ~/scipy/pandas/pandas/core/frame.py in rename(self, mapper, index, columns, axis, copy, inplace, level, errors) 4121 inplace=inplace, 4122 level=level, -> 4123 errors=errors, 4124 ) 4125 ~/scipy/pandas/pandas/core/generic.py in rename(self, mapper, index, columns, axis, copy, inplace, level, errors) 1031 elif mapper is not None: 1032 raise TypeError( -> 1033 "Cannot specify both 'mapper' and any of 'index' or 'columns'" 1034 ) 1035 else: TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns' In [27]: df.rename(mapper={0: 1}, index={0: 2}) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-27-3044f155e0d2> in <module> ----> 1 df.rename(mapper={0: 1}, index={0: 2}) ~/scipy/pandas/pandas/util/_decorators.py in wrapper(*args, **kwargs) 225 @wraps(func) 226 def wrapper(*args, **kwargs) -> Callable[..., Any]: --> 227 return func(*args, **kwargs) 228 229 kind = inspect.Parameter.POSITIONAL_OR_KEYWORD ~/scipy/pandas/pandas/core/frame.py in rename(self, mapper, index, columns, axis, copy, inplace, level, errors) 4121 inplace=inplace, 4122 level=level, -> 4123 errors=errors, 4124 ) 4125 ~/scipy/pandas/pandas/core/generic.py in rename(self, mapper, index, columns, axis, copy, inplace, level, errors) 1031 elif mapper is not None: 1032 raise TypeError( -> 1033 "Cannot specify both 'mapper' and any of 'index' or 'columns'" 1034 ) 1035 else: TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns'
You can still change the axis along which the first positional argument is applied by supplying the axis keyword argument.
axis
In [28]: df.rename({0: 1}) Out[28]: A B a 1 1 a 2 2 b 3 3 [3 rows x 2 columns] In [29]: df.rename({0: 1}, axis=1) Out[29]: A B a 1 1 a 2 2 b 3 3 [3 rows x 2 columns]
If you would like to update both the index and column labels, be sure to use the respective keywords.
In [30]: df.rename(index={0: 1}, columns={0: 2}) Out[30]: A B a 1 1 a 2 2 b 3 3 [3 rows x 2 columns]
DataFrame
DataFrame.info() now shows line numbers for the columns summary (GH17304)
DataFrame.info()
>>> df = pd.DataFrame({"int_col": [1, 2, 3], ... "text_col": ["a", "b", "c"], ... "float_col": [0.0, 0.1, 0.2]}) >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 3 columns): int_col 3 non-null int64 text_col 3 non-null object float_col 3 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 152.0+ bytes
In [31]: df = pd.DataFrame({"int_col": [1, 2, 3], ....: "text_col": ["a", "b", "c"], ....: "float_col": [0.0, 0.1, 0.2]}) ....: In [32]: df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 3 non-null int64 1 text_col 3 non-null object 2 float_col 3 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 200.0+ bytes
pandas.array()
pandas.array() now infers pandas’ new extension types in several cases (GH29791):
String data (including missing values) now returns a arrays.StringArray.
arrays.StringArray
Integer data (including missing values) now returns a arrays.IntegerArray.
arrays.IntegerArray
Boolean data (including missing values) now returns the new arrays.BooleanArray
arrays.BooleanArray
>>> pd.array(["a", None]) <PandasArray> ['a', None] Length: 2, dtype: object >>> pd.array([1, None]) <PandasArray> [1, None] Length: 2, dtype: object
In [33]: pd.array(["a", None]) Out[33]: <StringArray> ['a', <NA>] Length: 2, dtype: string In [34]: pd.array([1, None]) Out[34]: <IntegerArray> [1, <NA>] Length: 2, dtype: Int64
As a reminder, you can specify the dtype to disable all inference.
dtype
pandas.NA
arrays.IntegerArray now uses pandas.NA rather than numpy.nan as its missing value marker (GH29964).
numpy.nan
>>> a = pd.array([1, 2, None], dtype="Int64") >>> a <IntegerArray> [1, 2, NaN] Length: 3, dtype: Int64 >>> a[2] nan
In [35]: a = pd.array([1, 2, None], dtype="Int64") In [36]: a Out[36]: <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64 In [37]: a[2] Out[37]: <NA>
This has a few API-breaking consequences.
Converting to a NumPy ndarray
When converting to a NumPy array missing values will be pd.NA, which cannot be converted to a float. So calling np.asarray(integer_array, dtype="float") will now raise.
np.asarray(integer_array, dtype="float")
>>> np.asarray(a, dtype="float") array([ 1., 2., nan])
In [38]: np.asarray(a, dtype="float") --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-38-4578f04da2b3> in <module> ----> 1 np.asarray(a, dtype="float") ~/miniconda3/envs/docs/lib/python3.7/site-packages/numpy/core/numeric.py in asarray(a, dtype, order) 536 537 """ --> 538 return array(a, dtype, copy=False, order=order) 539 540 ~/scipy/pandas/pandas/core/arrays/masked.py in __array__(self, dtype) 142 We return an object array here to preserve our scalar values 143 """ --> 144 return self.to_numpy(dtype=dtype) 145 146 def __arrow_array__(self, type=None): ~/scipy/pandas/pandas/core/arrays/masked.py in to_numpy(self, dtype, copy, na_value) 124 ): 125 raise ValueError( --> 126 f"cannot convert to '{dtype}'-dtype NumPy array " 127 "with missing values. Specify an appropriate 'na_value' " 128 "for this dtype." ValueError: cannot convert to 'float64'-dtype NumPy array with missing values. Specify an appropriate 'na_value' for this dtype.
Use arrays.IntegerArray.to_numpy() with an explicit na_value instead.
arrays.IntegerArray.to_numpy()
In [39]: a.to_numpy(dtype="float", na_value=np.nan) Out[39]: array([ 1., 2., nan])
Reductions can return ``pd.NA``
When performing a reduction such as a sum with skipna=False, the result will now be pd.NA instead of np.nan in presence of missing values (GH30958).
skipna=False
>>> pd.Series(a).sum(skipna=False) nan
In [40]: pd.Series(a).sum(skipna=False) Out[40]: <NA>
value_counts returns a nullable integer dtype
Series.value_counts() with a nullable integer dtype now returns a nullable integer dtype for the values.
Series.value_counts()
>>> pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype dtype('int64')
In [41]: pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype Out[41]: Int64Dtype()
See Experimental NA scalar to denote missing values for more on the differences between pandas.NA and numpy.nan.
Comparison operations on a arrays.IntegerArray now returns a arrays.BooleanArray rather than a NumPy array (GH29964).
>>> a = pd.array([1, 2, None], dtype="Int64") >>> a <IntegerArray> [1, 2, NaN] Length: 3, dtype: Int64 >>> a > 1 array([False, True, False])
In [42]: a = pd.array([1, 2, None], dtype="Int64") In [43]: a > 1 Out[43]: <BooleanArray> [False, True, <NA>] Length: 3, dtype: boolean
Note that missing values now propagate, rather than always comparing unequal like numpy.nan. See Experimental NA scalar to denote missing values for more.
Categorical.min()
When Categorical contains np.nan, Categorical.min() no longer return np.nan by default (skipna=True) (GH25303)
Categorical
In [1]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[1]: nan
In [44]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[44]: 1
pandas.Series
Initialising an empty pandas.Series without specifying a dtype will raise a DeprecationWarning now (GH17261). The default dtype will change from float64 to object in future releases so that it is consistent with the behaviour of DataFrame and Index.
float64
Index
In [1]: pd.Series() Out[2]: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning. Series([], dtype: float64)
Pandas 1.0.0 supports Python 3.6.1 and higher (GH29212).
Some minimum supported versions of dependencies were updated (GH29766, GH29723). If installed, we now require:
Package
Minimum Version
Required
Changed
numpy
1.13.3
X
pytz
2015.4
python-dateutil
2.6.1
bottleneck
1.2.1
numexpr
2.6.2
pytest (dev)
4.0.2
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
beautifulsoup4
4.6.0
fastparquet
0.3.2
gcsfs
0.2.2
lxml
3.8.0
matplotlib
2.2.2
numba
0.46.0
openpyxl
2.5.7
0.13.0
pymysql
0.7.1
pytables
3.4.2
s3fs
0.3.0
scipy
0.19.0
sqlalchemy
1.1.4
xarray
0.8.2
xlrd
1.1.0
xlsxwriter
0.9.8
xlwt
1.2.0
See Dependencies and Optional dependencies for more.
Bumped the minimum supported version of s3fs from 0.0.8 to 0.3.0 (GH28616)
core.groupby.GroupBy.transform now raises on invalid operation names (GH27489)
core.groupby.GroupBy.transform
pandas.api.types.infer_dtype() will now return “integer-na” for integer and np.nan mix (GH27283)
pandas.api.types.infer_dtype()
MultiIndex.from_arrays() will no longer infer names from arrays if names=None is explicitly provided (GH27292)
MultiIndex.from_arrays()
names=None
In order to improve tab-completion, Pandas does not include most deprecated attributes when introspecting a pandas object using dir (e.g. dir(df)). To see which attributes are excluded, see an object’s _deprecations attribute, for example pd.DataFrame._deprecations (GH28805).
dir
dir(df)
_deprecations
pd.DataFrame._deprecations
The returned dtype of :pd.unique() now matches the input dtype. (GH27874)
pd.unique()
Changed the default configuration value for options.matplotlib.register_converters from True to "auto" (GH18720). Now, pandas custom formatters will only be applied to plots created by pandas, through plot(). Previously, pandas’ formatters would be applied to all plots created after a plot(). See units registration for more.
options.matplotlib.register_converters
"auto"
plot()
Series.dropna() has dropped its **kwargs argument in favor of a single how parameter. Supplying anything else than how to **kwargs raised a TypeError previously (GH29388)
Series.dropna()
**kwargs
how
TypeError
When testing pandas, the new minimum required version of pytest is 5.0.1 (GH29664)
Series.str.__iter__() was deprecated and will be removed in future releases (GH28277).
Series.str.__iter__()
Added <NA> to the list of default NA values for read_csv() (GH30821)
<NA>
read_csv()
Added new section on Scaling to large datasets (GH28315).
Added sub-section on Query MultiIndex for HDF5 datasets (GH28791).
Series.item() and Index.item() have been _undeprecated_ (GH29250)
Series.item()
Index.item()
Index.set_value has been deprecated. For a given index idx, array arr, value in idx of idx_val and a new value of val, idx.set_value(arr, idx_val, val) is equivalent to arr[idx.get_loc(idx_val)] = val, which should be used instead (GH28621).
Index.set_value
idx
arr
idx_val
val
idx.set_value(arr, idx_val, val)
arr[idx.get_loc(idx_val)] = val
is_extension_type() is deprecated, is_extension_array_dtype() should be used instead (GH29457)
is_extension_type()
is_extension_array_dtype()
eval() keyword argument “truediv” is deprecated and will be removed in a future version (GH29812)
eval()
DateOffset.isAnchored() and DatetOffset.onOffset() are deprecated and will be removed in a future version, use DateOffset.is_anchored() and DateOffset.is_on_offset() instead (GH30340)
DateOffset.isAnchored()
DatetOffset.onOffset()
DateOffset.is_anchored()
DateOffset.is_on_offset()
pandas.tseries.frequencies.get_offset is deprecated and will be removed in a future version, use pandas.tseries.frequencies.to_offset instead (GH4205)
pandas.tseries.frequencies.get_offset
pandas.tseries.frequencies.to_offset
Categorical.take_nd() and CategoricalIndex.take_nd() are deprecated, use Categorical.take() and CategoricalIndex.take() instead (GH27745)
Categorical.take_nd()
CategoricalIndex.take_nd()
Categorical.take()
CategoricalIndex.take()
The parameter numeric_only of Categorical.min() and Categorical.max() is deprecated and replaced with skipna (GH25303)
numeric_only
Categorical.max()
skipna
The parameter label in lreshape() has been deprecated and will be removed in a future version (GH29742)
lreshape()
pandas.core.index has been deprecated and will be removed in a future version, the public classes are available in the top-level namespace (GH19711)
pandas.core.index
pandas.json_normalize() is now exposed in the top-level namespace. Usage of json_normalize as pandas.io.json.json_normalize is now deprecated and it is recommended to use json_normalize as pandas.json_normalize() instead (GH27586).
pandas.json_normalize()
json_normalize
pandas.io.json.json_normalize
The numpy argument of pandas.read_json() is deprecated (GH28512).
DataFrame.to_stata(), DataFrame.to_feather(), and DataFrame.to_parquet() argument “fname” is deprecated, use “path” instead (GH23574)
DataFrame.to_stata()
DataFrame.to_feather()
The deprecated internal attributes _start, _stop and _step of RangeIndex now raise a FutureWarning instead of a DeprecationWarning (GH26581)
_start
_stop
_step
RangeIndex
FutureWarning
DeprecationWarning
The pandas.util.testing module has been deprecated. Use the public API in pandas.testing documented at Testing functions (GH16232).
pandas.util.testing
pandas.testing
pandas.SparseArray has been deprecated. Use pandas.arrays.SparseArray (arrays.SparseArray) instead. (GH30642)
pandas.SparseArray
pandas.arrays.SparseArray
arrays.SparseArray
The parameter is_copy of DataFrame.take() has been deprecated and will be removed in a future version. (GH27357)
is_copy
DataFrame.take()
Support for multi-dimensional indexing (e.g. index[:, None]) on a Index is deprecated and will be removed in a future version, convert to a numpy array before indexing instead (GH30588)
index[:, None]
The pandas.np submodule is now deprecated. Import numpy directly instead (GH30296)
pandas.np
The pandas.datetime class is now deprecated. Import from datetime instead (GH30610)
pandas.datetime
datetime
Selecting Columns from a Grouped DataFrame
When selecting columns from a DataFrameGroupBy object, passing individual keys (or a tuple of keys) inside single brackets is deprecated, a list of items should be used instead. (GH23566) For example:
DataFrameGroupBy
df = pd.DataFrame({ "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": np.random.randn(8), "C": np.random.randn(8), }) g = df.groupby('A') # single key, returns SeriesGroupBy g['B'] # tuple of single key, returns SeriesGroupBy g[('B',)] # tuple of multiple keys, returns DataFrameGroupBy, raises FutureWarning g[('B', 'C')] # multiple keys passed directly, returns DataFrameGroupBy, raises FutureWarning # (implicitly converts the passed strings into a single tuple) g['B', 'C'] # proper way, returns DataFrameGroupBy g[['B', 'C']]
Removed SparseSeries and SparseDataFrame
SparseSeries, SparseDataFrame and the DataFrame.to_sparse method have been removed (GH28425). We recommend using a Series or DataFrame with sparse values instead. See Migrating for help with migrating existing code.
SparseSeries
SparseDataFrame
DataFrame.to_sparse
Series
Matplotlib unit registration
Previously, pandas would register converters with matplotlib as a side effect of importing pandas (GH18720). This changed the output of plots made via matplotlib plots after pandas was imported, even if you were using matplotlib directly rather than plot().
To use pandas formatters with a matplotlib plot, specify
>>> import pandas as pd >>> pd.options.plotting.matplotlib.register_converters = True
Note that plots created by DataFrame.plot() and Series.plot() do register the converters automatically. The only behavior change is when plotting a date-like object via matplotlib.pyplot.plot or matplotlib.Axes.plot. See Custom formatters for timeseries plots for more.
DataFrame.plot()
Series.plot()
matplotlib.pyplot.plot
matplotlib.Axes.plot
Other removals
Removed the previously deprecated keyword “index” from read_stata(), StataReader, and StataReader.read(), use “index_col” instead (GH17328)
StataReader
StataReader.read()
Removed StataReader.data method, use StataReader.read() instead (GH9493)
StataReader.data
Removed pandas.plotting._matplotlib.tsplot, use Series.plot() instead (GH19980)
pandas.plotting._matplotlib.tsplot
pandas.tseries.converter.register has been moved to pandas.plotting.register_matplotlib_converters() (GH18307)
pandas.tseries.converter.register
pandas.plotting.register_matplotlib_converters()
Series.plot() no longer accepts positional arguments, pass keyword arguments instead (GH30003)
DataFrame.hist() and Series.hist() no longer allows figsize="default", specify figure size by passinig a tuple instead (GH30003)
DataFrame.hist()
Series.hist()
figsize="default"
Floordiv of integer-dtyped array by Timedelta now raises TypeError (GH21036)
Timedelta
TimedeltaIndex and DatetimeIndex no longer accept non-nanosecond dtype strings like “timedelta64” or “datetime64”, use “timedelta64[ns]” and “datetime64[ns]” instead (GH24806)
TimedeltaIndex
DatetimeIndex
Changed the default “skipna” argument in pandas.api.types.infer_dtype() from False to True (GH24050)
Removed Series.ix and DataFrame.ix (GH26438)
Series.ix
DataFrame.ix
Removed Index.summary (GH18217)
Index.summary
Removed the previously deprecated keyword “fastpath” from the Index constructor (GH23110)
Removed Series.get_value, Series.set_value, DataFrame.get_value, DataFrame.set_value (GH17739)
Series.get_value
Series.set_value
DataFrame.get_value
DataFrame.set_value
Removed Series.compound and DataFrame.compound (GH26405)
Series.compound
DataFrame.compound
Changed the default “inplace” argument in DataFrame.set_index() and Series.set_axis() from None to False (GH27600)
DataFrame.set_index()
Series.set_axis()
Removed Series.cat.categorical, Series.cat.index, Series.cat.name (GH24751)
Series.cat.categorical
Series.cat.index
Series.cat.name
Removed the previously deprecated keyword “box” from to_datetime() and to_timedelta(); in addition these now always returns DatetimeIndex, TimedeltaIndex, Index, Series, or DataFrame (GH24486)
to_datetime()
to_timedelta()
to_timedelta(), Timedelta, and TimedeltaIndex no longer allow “M”, “y”, or “Y” for the “unit” argument (GH23264)
Removed the previously deprecated keyword “time_rule” from (non-public) offsets.generate_range, which has been moved to core.arrays._ranges.generate_range() (GH24157)
offsets.generate_range
core.arrays._ranges.generate_range()
DataFrame.loc() or Series.loc() with listlike indexers and missing labels will no longer reindex (GH17295)
DataFrame.loc()
Series.loc()
DataFrame.to_excel() and Series.to_excel() with non-existent columns will no longer reindex (GH17295)
DataFrame.to_excel()
Series.to_excel()
Removed the previously deprecated keyword “join_axes” from concat(); use reindex_like on the result instead (GH22318)
concat()
reindex_like
Removed the previously deprecated keyword “by” from DataFrame.sort_index(), use DataFrame.sort_values() instead (GH10726)
Removed support for nested renaming in DataFrame.aggregate(), Series.aggregate(), core.groupby.DataFrameGroupBy.aggregate(), core.groupby.SeriesGroupBy.aggregate(), core.window.rolling.Rolling.aggregate() (GH18529)
DataFrame.aggregate()
Series.aggregate()
core.groupby.DataFrameGroupBy.aggregate()
core.groupby.SeriesGroupBy.aggregate()
core.window.rolling.Rolling.aggregate()
Passing datetime64 data to TimedeltaIndex or timedelta64 data to DatetimeIndex now raises TypeError (GH23539, GH23937)
datetime64
timedelta64
Passing int64 values to DatetimeIndex and a timezone now interprets the values as nanosecond timestamps in UTC, not wall times in the given timezone (GH24559)
int64
A tuple passed to DataFrame.groupby() is now exclusively treated as a single key (GH18314)
DataFrame.groupby()
Removed Index.contains, use key in index instead (GH30103)
Index.contains
key in index
Addition and subtraction of int or integer-arrays is no longer allowed in Timestamp, DatetimeIndex, TimedeltaIndex, use obj + n * obj.freq instead of obj + n (GH22535)
int
Timestamp
obj + n * obj.freq
obj + n
Removed Series.ptp (GH21614)
Series.ptp
Removed Series.from_array (GH18258)
Series.from_array
Removed DataFrame.from_items (GH18458)
DataFrame.from_items
Removed DataFrame.as_matrix, Series.as_matrix (GH18458)
DataFrame.as_matrix
Series.as_matrix
Removed Series.asobject (GH18477)
Series.asobject
Removed DataFrame.as_blocks, Series.as_blocks, DataFrame.blocks, Series.blocks (GH17656)
DataFrame.as_blocks
Series.as_blocks
DataFrame.blocks
Series.blocks
pandas.Series.str.cat() now defaults to aligning others, using join='left' (GH27611)
pandas.Series.str.cat()
others
join='left'
pandas.Series.str.cat() does not accept list-likes within list-likes anymore (GH27611)
Series.where() with Categorical dtype (or DataFrame.where() with Categorical column) no longer allows setting new categories (GH24114)
Series.where()
DataFrame.where()
Removed the previously deprecated keywords “start”, “end”, and “periods” from the DatetimeIndex, TimedeltaIndex, and PeriodIndex constructors; use date_range(), timedelta_range(), and period_range() instead (GH23919)
PeriodIndex
date_range()
timedelta_range()
period_range()
Removed the previously deprecated keyword “verify_integrity” from the DatetimeIndex and TimedeltaIndex constructors (GH23919)
Removed the previously deprecated keyword “fastpath” from pandas.core.internals.blocks.make_block (GH19265)
pandas.core.internals.blocks.make_block
Removed the previously deprecated keyword “dtype” from Block.make_block_same_class() (GH19434)
Block.make_block_same_class()
Removed ExtensionArray._formatting_values. Use ExtensionArray._formatter instead. (GH23601)
ExtensionArray._formatting_values
ExtensionArray._formatter
Removed MultiIndex.to_hierarchical (GH21613)
MultiIndex.to_hierarchical
Removed MultiIndex.labels, use MultiIndex.codes instead (GH23752)
MultiIndex.labels
MultiIndex.codes
Removed the previously deprecated keyword “labels” from the MultiIndex constructor, use “codes” instead (GH23752)
Removed MultiIndex.set_labels, use MultiIndex.set_codes() instead (GH23752)
MultiIndex.set_labels
MultiIndex.set_codes()
Removed the previously deprecated keyword “labels” from MultiIndex.set_codes(), MultiIndex.copy(), MultiIndex.drop(), use “codes” instead (GH23752)
MultiIndex.copy()
MultiIndex.drop()
Removed support for legacy HDF5 formats (GH29787)
Passing a dtype alias (e.g. ‘datetime64[ns, UTC]’) to DatetimeTZDtype is no longer allowed, use DatetimeTZDtype.construct_from_string() instead (GH23990)
DatetimeTZDtype
DatetimeTZDtype.construct_from_string()
Removed the previously deprecated keyword “skip_footer” from read_excel(); use “skipfooter” instead (GH18836)
read_excel()
read_excel() no longer allows an integer value for the parameter usecols, instead pass a list of integers from 0 to usecols inclusive (GH23635)
usecols
Removed the previously deprecated keyword “convert_datetime64” from DataFrame.to_records() (GH18902)
DataFrame.to_records()
Removed IntervalIndex.from_intervals in favor of the IntervalIndex constructor (GH19263)
IntervalIndex.from_intervals
IntervalIndex
Changed the default “keep_tz” argument in DatetimeIndex.to_series() from None to True (GH23739)
DatetimeIndex.to_series()
Removed api.types.is_period and api.types.is_datetimetz (GH23917)
api.types.is_period
api.types.is_datetimetz
Ability to read pickles containing Categorical instances created with pre-0.16 version of pandas has been removed (GH27538)
Removed pandas.tseries.plotting.tsplot (GH18627)
pandas.tseries.plotting.tsplot
Removed the previously deprecated keywords “reduce” and “broadcast” from DataFrame.apply() (GH18577)
DataFrame.apply()
Removed the previously deprecated assert_raises_regex function in pandas._testing (GH29174)
assert_raises_regex
pandas._testing
Removed the previously deprecated FrozenNDArray class in pandas.core.indexes.frozen (GH29335)
FrozenNDArray
pandas.core.indexes.frozen
Removed the previously deprecated keyword “nthreads” from read_feather(), use “use_threads” instead (GH23053)
read_feather()
Removed Index.is_lexsorted_for_tuple (GH29305)
Index.is_lexsorted_for_tuple
Removed support for nested renaming in DataFrame.aggregate(), Series.aggregate(), core.groupby.DataFrameGroupBy.aggregate(), core.groupby.SeriesGroupBy.aggregate(), core.window.rolling.Rolling.aggregate() (GH29608)
Removed Series.valid; use Series.dropna() instead (GH18800)
Series.valid
Removed DataFrame.is_copy, Series.is_copy (GH18812)
DataFrame.is_copy
Series.is_copy
Removed DataFrame.get_ftype_counts, Series.get_ftype_counts (GH18243)
DataFrame.get_ftype_counts
Series.get_ftype_counts
Removed DataFrame.ftypes, Series.ftypes, Series.ftype (GH26744)
DataFrame.ftypes
Series.ftypes
Series.ftype
Removed Index.get_duplicates, use idx[idx.duplicated()].unique() instead (GH20239)
Index.get_duplicates
idx[idx.duplicated()].unique()
Removed Series.clip_upper, Series.clip_lower, DataFrame.clip_upper, DataFrame.clip_lower (GH24203)
Series.clip_upper
Series.clip_lower
DataFrame.clip_upper
DataFrame.clip_lower
Removed the ability to alter DatetimeIndex.freq, TimedeltaIndex.freq, or PeriodIndex.freq (GH20772)
DatetimeIndex.freq
TimedeltaIndex.freq
PeriodIndex.freq
Removed DatetimeIndex.offset (GH20730)
DatetimeIndex.offset
Removed DatetimeIndex.asobject, TimedeltaIndex.asobject, PeriodIndex.asobject, use astype(object) instead (GH29801)
DatetimeIndex.asobject
TimedeltaIndex.asobject
PeriodIndex.asobject
astype(object)
Removed the previously deprecated keyword “order” from factorize() (GH19751)
factorize()
Removed the previously deprecated keyword “encoding” from read_stata() and DataFrame.to_stata() (GH21400)
Changed the default “sort” argument in concat() from None to False (GH20613)
Removed the previously deprecated keyword “raise_conflict” from DataFrame.update(), use “errors” instead (GH23585)
DataFrame.update()
Removed the previously deprecated keyword “n” from DatetimeIndex.shift(), TimedeltaIndex.shift(), PeriodIndex.shift(), use “periods” instead (GH22458)
DatetimeIndex.shift()
TimedeltaIndex.shift()
PeriodIndex.shift()
Removed the previously deprecated keywords “how”, “fill_method”, and “limit” from DataFrame.resample() (GH30139)
DataFrame.resample()
Passing an integer to Series.fillna() or DataFrame.fillna() with timedelta64[ns] dtype now raises TypeError (GH24694)
Series.fillna()
DataFrame.fillna()
timedelta64[ns]
Passing multiple axes to DataFrame.dropna() is no longer supported (GH20995)
DataFrame.dropna()
Removed Series.nonzero, use to_numpy().nonzero() instead (GH24048)
Series.nonzero
to_numpy().nonzero()
Passing floating dtype codes to Categorical.from_codes() is no longer supported, pass codes.astype(np.int64) instead (GH21775)
codes
Categorical.from_codes()
codes.astype(np.int64)
Removed the previously deprecated keyword “pat” from Series.str.partition() and Series.str.rpartition(), use “sep” instead (GH23767)
Series.str.partition()
Series.str.rpartition()
Removed Series.put (GH27106)
Series.put
Removed Series.real, Series.imag (GH27106)
Series.real
Series.imag
Removed Series.to_dense, DataFrame.to_dense (GH26684)
Series.to_dense
DataFrame.to_dense
Removed Index.dtype_str, use str(index.dtype) instead (GH27106)
Index.dtype_str
str(index.dtype)
Categorical.ravel() returns a Categorical instead of a ndarray (GH27199)
Categorical.ravel()
ndarray
The ‘outer’ method on Numpy ufuncs, e.g. np.subtract.outer operating on Series objects is no longer supported, and will raise NotImplementedError (GH27198)
np.subtract.outer
NotImplementedError
Removed Series.get_dtype_counts and DataFrame.get_dtype_counts (GH27145)
Series.get_dtype_counts
DataFrame.get_dtype_counts
Changed the default “fill_value” argument in Categorical.take() from True to False (GH20841)
Changed the default value for the raw argument in Series.rolling().apply(), DataFrame.rolling().apply(), Series.expanding().apply(), and DataFrame.expanding().apply() from None to False (GH20584)
Series.rolling().apply()
DataFrame.rolling().apply()
Series.expanding().apply()
DataFrame.expanding().apply()
Removed deprecated behavior of Series.argmin() and Series.argmax(), use Series.idxmin() and Series.idxmax() for the old behavior (GH16955)
Series.argmin()
Series.argmax()
Series.idxmin()
Series.idxmax()
Passing a tz-aware datetime.datetime or Timestamp into the Timestamp constructor with the tz argument now raises a ValueError (GH23621)
datetime.datetime
tz
ValueError
Removed Series.base, Index.base, Categorical.base, Series.flags, Index.flags, PeriodArray.flags, Series.strides, Index.strides, Series.itemsize, Index.itemsize, Series.data, Index.data (GH20721)
Series.base
Index.base
Categorical.base
Series.flags
Index.flags
PeriodArray.flags
Series.strides
Index.strides
Series.itemsize
Index.itemsize
Series.data
Index.data
Changed Timedelta.resolution() to match the behavior of the standard library datetime.timedelta.resolution, for the old behavior, use Timedelta.resolution_string() (GH26839)
Timedelta.resolution()
datetime.timedelta.resolution
Timedelta.resolution_string()
Removed Timestamp.weekday_name, DatetimeIndex.weekday_name, and Series.dt.weekday_name (GH18164)
Timestamp.weekday_name
DatetimeIndex.weekday_name
Series.dt.weekday_name
Removed the previously deprecated keyword “errors” in Timestamp.tz_localize(), DatetimeIndex.tz_localize(), and Series.tz_localize() (GH22644)
Timestamp.tz_localize()
DatetimeIndex.tz_localize()
Series.tz_localize()
Changed the default “ordered” argument in CategoricalDtype from None to False (GH26336)
CategoricalDtype
Series.set_axis() and DataFrame.set_axis() now require “labels” as the first argument and “axis” as an optional named parameter (GH30089)
DataFrame.set_axis()
Removed to_msgpack, read_msgpack, DataFrame.to_msgpack, Series.to_msgpack (GH27103)
to_msgpack
read_msgpack
DataFrame.to_msgpack
Series.to_msgpack
Removed Series.compress (GH21930)
Series.compress
Removed the previously deprecated keyword “fill_value” from Categorical.fillna(), use “value” instead (GH19269)
Categorical.fillna()
Removed the previously deprecated keyword “data” from andrews_curves(), use “frame” instead (GH6956)
andrews_curves()
Removed the previously deprecated keyword “data” from parallel_coordinates(), use “frame” instead (GH6956)
parallel_coordinates()
Removed the previously deprecated keyword “colors” from parallel_coordinates(), use “color” instead (GH6956)
Removed the previously deprecated keywords “verbose” and “private_key” from read_gbq() (GH30200)
read_gbq()
Calling np.array and np.asarray on tz-aware Series and DatetimeIndex will now return an object array of tz-aware Timestamp (GH24596)
np.array
np.asarray
Performance improvement in DataFrame arithmetic and comparison operations with scalars (GH24990, GH29853)
Performance improvement in indexing with a non-unique IntervalIndex (GH27489)
Performance improvement in MultiIndex.is_monotonic (GH27495)
MultiIndex.is_monotonic
Performance improvement in cut() when bins is an IntervalIndex (GH27668)
cut()
bins
Performance improvement when initializing a DataFrame using a range (GH30171)
range
Performance improvement in DataFrame.corr() when method is "spearman" (GH28139)
DataFrame.corr()
method
"spearman"
Performance improvement in DataFrame.replace() when provided a list of values to replace (GH28099)
DataFrame.replace()
Performance improvement in DataFrame.select_dtypes() by using vectorization instead of iterating over a loop (GH28317)
Performance improvement in Categorical.searchsorted() and CategoricalIndex.searchsorted() (GH28795)
Categorical.searchsorted()
CategoricalIndex.searchsorted()
Performance improvement when comparing a Categorical with a scalar and the scalar is not found in the categories (GH29750)
Performance improvement when checking if values in a Categorical are equal, equal or larger or larger than a given scalar. The improvement is not present if checking if the Categorical is less than or less than or equal than the scalar (GH29820)
Performance improvement in Index.equals() and MultiIndex.equals() (GH29134)
Index.equals()
MultiIndex.equals()
Performance improvement in infer_dtype() when skipna is True (GH28814)
infer_dtype()
Added test to assert the fillna() raises the correct ValueError message when the value isn’t a value from categories (GH13628)
fillna()
Bug in Categorical.astype() where NaN values were handled incorrectly when casting to int (GH28406)
Categorical.astype()
DataFrame.reindex() with a CategoricalIndex would fail when the targets contained duplicates, and wouldn’t fail if the source contained duplicates (GH28107)
DataFrame.reindex()
CategoricalIndex
Bug in Categorical.astype() not allowing for casting to extension dtypes (GH28668)
Bug where merge() was unable to join on categorical and extension dtype columns (GH28668)
merge()
Categorical.searchsorted() and CategoricalIndex.searchsorted() now work on unordered categoricals also (GH21667)
Added test to assert roundtripping to parquet with DataFrame.to_parquet() or read_parquet() will preserve Categorical dtypes for string types (GH27955)
Changed the error message in Categorical.remove_categories() to always show the invalid removals as a set (GH28669)
Categorical.remove_categories()
Using date accessors on a categorical dtyped Series of datetimes was not returning an object of the same type as if one used the str.() / dt.() on a Series of that type. E.g. when accessing Series.dt.tz_localize() on a Categorical with duplicate entries, the accessor was skipping duplicates (GH27952)
str.()
dt.()
Series.dt.tz_localize()
Bug in DataFrame.replace() and Series.replace() that would give incorrect results on categorical data (GH26988)
Series.replace()
Bug where calling Categorical.min() or Categorical.max() on an empty Categorical would raise a numpy exception (GH30227)
The following methods now also correctly output values for unobserved categories when called through groupby(..., observed=False) (GH17605) * core.groupby.SeriesGroupBy.count() * core.groupby.SeriesGroupBy.size() * core.groupby.SeriesGroupBy.nunique() * core.groupby.SeriesGroupBy.nth()
groupby(..., observed=False)
core.groupby.SeriesGroupBy.count()
core.groupby.SeriesGroupBy.size()
core.groupby.SeriesGroupBy.nunique()
core.groupby.SeriesGroupBy.nth()
Bug in Series.__setitem__() incorrectly casting np.timedelta64("NaT") to np.datetime64("NaT") when inserting into a Series with datetime64 dtype (GH27311)
Series.__setitem__()
np.timedelta64("NaT")
np.datetime64("NaT")
Bug in Series.dt() property lookups when the underlying data is read-only (GH27529)
Series.dt()
Bug in HDFStore.__getitem__ incorrectly reading tz attribute created in Python 2 (GH26443)
HDFStore.__getitem__
Bug in to_datetime() where passing arrays of malformed str with errors=”coerce” could incorrectly lead to raising ValueError (GH28299)
str
Bug in core.groupby.SeriesGroupBy.nunique() where NaT values were interfering with the count of unique values (GH27951)
NaT
Bug in Timestamp subtraction when subtracting a Timestamp from a np.datetime64 object incorrectly raising TypeError (GH28286)
np.datetime64
Addition and subtraction of integer or integer-dtype arrays with Timestamp will now raise NullFrequencyError instead of ValueError (GH28268)
NullFrequencyError
Bug in Series and DataFrame with integer dtype failing to raise TypeError when adding or subtracting a np.datetime64 object (GH28080)
Bug in Series.astype(), Index.astype(), and DataFrame.astype() failing to handle NaT when casting to an integer dtype (GH28492)
Series.astype()
Index.astype()
DataFrame.astype()
Bug in Week with weekday incorrectly raising AttributeError instead of TypeError when adding or subtracting an invalid type (GH28530)
Week
weekday
AttributeError
Bug in DataFrame arithmetic operations when operating with a Series with dtype ‘timedelta64[ns]’ (GH28049)
Bug in core.groupby.generic.SeriesGroupBy.apply() raising ValueError when a column in the original DataFrame is a datetime and the column labels are not standard integers (GH28247)
core.groupby.generic.SeriesGroupBy.apply()
Bug in pandas._config.localization.get_locales() where the locales -a encodes the locales list as windows-1252 (GH23638, GH24760, GH27368)
pandas._config.localization.get_locales()
locales -a
Bug in Series.var() failing to raise TypeError when called with timedelta64[ns] dtype (GH28289)
Series.var()
Bug in DatetimeIndex.strftime() and Series.dt.strftime() where NaT was converted to the string 'NaT' instead of np.nan (GH29578)
DatetimeIndex.strftime()
Series.dt.strftime()
'NaT'
Bug in masking datetime-like arrays with a boolean mask of an incorrect length not raising an IndexError (GH30308)
IndexError
Bug in Timestamp.resolution being a property instead of a class attribute (GH29910)
Timestamp.resolution
Bug in pandas.to_datetime() when called with None raising TypeError instead of returning NaT (GH30011)
pandas.to_datetime()
Bug in pandas.to_datetime() failing for deques when using cache=True (the default) (GH29403)
cache=True
Bug in Series.item() with datetime64 or timedelta64 dtype, DatetimeIndex.item(), and TimedeltaIndex.item() returning an integer instead of a Timestamp or Timedelta (GH30175)
DatetimeIndex.item()
TimedeltaIndex.item()
Bug in DatetimeIndex addition when adding a non-optimized DateOffset incorrectly dropping timezone information (GH30336)
DateOffset
Bug in DataFrame.drop() where attempting to drop non-existent values from a DatetimeIndex would yield a confusing error message (GH30399)
DataFrame.drop()
Bug in DataFrame.append() would remove the timezone-awareness of new data (GH30238)
DataFrame.append()
Bug in Series.cummin() and Series.cummax() with timezone-aware dtype incorrectly dropping its timezone (GH15553)
Series.cummin()
Series.cummax()
Bug in DatetimeArray, TimedeltaArray, and PeriodArray where inplace addition and subtraction did not actually operate inplace (GH24115)
DatetimeArray
TimedeltaArray
PeriodArray
Bug in pandas.to_datetime() when called with Series storing IntegerArray raising TypeError instead of returning Series (GH30050)
IntegerArray
Bug in date_range() with custom business hours as freq and given number of periods (GH30593)
freq
periods
Bug in PeriodIndex comparisons with incorrectly casting integers to Period objects, inconsistent with the Period comparison behavior (GH30722)
Period
Bug in DatetimeIndex.insert() raising a ValueError instead of a TypeError when trying to insert a timezone-aware Timestamp into a timezone-naive DatetimeIndex, or vice-versa (GH30806)
DatetimeIndex.insert()
Bug in subtracting a TimedeltaIndex or TimedeltaArray from a np.datetime64 object (GH29558)
Bug in DataFrame.quantile() with zero-column DataFrame incorrectly raising (GH23925)
DataFrame.quantile()
DataFrame flex inequality comparisons methods (DataFrame.lt(), DataFrame.le(), DataFrame.gt(), DataFrame.ge()) with object-dtype and complex entries failing to raise TypeError like their Series counterparts (GH28079)
DataFrame.lt()
DataFrame.le()
DataFrame.gt()
DataFrame.ge()
complex
Bug in DataFrame logical operations (&, |, ^) not matching Series behavior by filling NA values (GH28741)
Bug in DataFrame.interpolate() where specifying axis by name references variable before it is assigned (GH29142)
DataFrame.interpolate()
Bug in Series.var() not computing the right value with a nullable integer dtype series not passing through ddof argument (GH29128)
Improved error message when using frac > 1 and replace = False (GH27451)
Bug in numeric indexes resulted in it being possible to instantiate an Int64Index, UInt64Index, or Float64Index with an invalid dtype (e.g. datetime-like) (GH29539)
Int64Index
UInt64Index
Float64Index
Bug in UInt64Index precision loss while constructing from a list with values in the np.uint64 range (GH29526)
np.uint64
Bug in NumericIndex construction that caused indexing to fail when integers in the np.uint64 range were used (GH28023)
NumericIndex
Bug in NumericIndex construction that caused UInt64Index to be casted to Float64Index when integers in the np.uint64 range were used to index a DataFrame (GH28279)
Bug in Series.interpolate() when using method=`index` with an unsorted index, would previously return incorrect results. (GH21037)
Series.interpolate()
Bug in DataFrame.round() where a DataFrame with a CategoricalIndex of IntervalIndex columns would incorrectly raise a TypeError (GH30063)
DataFrame.round()
Bug in Series.pct_change() and DataFrame.pct_change() when there are duplicated indices (GH30463)
Series.pct_change()
DataFrame.pct_change()
Bug in DataFrame cumulative operations (e.g. cumsum, cummax) incorrect casting to object-dtype (GH19296)
Calling Series.str.isalnum() (and other “ismethods”) on an empty Series would return an object dtype instead of bool (GH29624)
Series.str.isalnum()
Bug in IntervalIndex.get_indexer() where a Categorical or CategoricalIndex target would incorrectly raise a TypeError (GH30063)
IntervalIndex.get_indexer()
target
Bug in pandas.core.dtypes.cast.infer_dtype_from_scalar where passing pandas_dtype=True did not infer IntervalDtype (GH30337)
pandas.core.dtypes.cast.infer_dtype_from_scalar
pandas_dtype=True
IntervalDtype
Bug in Series constructor where constructing a Series from a list of Interval objects resulted in object dtype instead of IntervalDtype (GH23563)
list
Interval
Bug in IntervalDtype where the kind attribute was incorrectly set as None instead of "O" (GH30568)
kind
"O"
Bug in IntervalIndex, IntervalArray, and Series with interval data where equality comparisons were incorrect (GH24112)
Bug in assignment using a reverse slicer (GH26939)
Bug in DataFrame.explode() would duplicate frame in the presence of duplicates in the index (GH28010)
DataFrame.explode()
Bug in reindexing a PeriodIndex() with another type of index that contained a Period (GH28323) (GH28337)
PeriodIndex()
Fix assignment of column via .loc with numpy non-ns datetime type (GH27395)
Bug in Float64Index.astype() where np.inf was not handled properly when casting to an integer dtype (GH28475)
Float64Index.astype()
np.inf
Index.union() could fail when the left contained duplicates (GH28257)
Index.union()
Bug when indexing with .loc where the index was a CategoricalIndex with non-string categories didn’t work (GH17569, GH30225)
.loc
Index.get_indexer_non_unique() could fail with TypeError in some cases, such as when searching for ints in a string index (GH28257)
Index.get_indexer_non_unique()
Bug in Float64Index.get_loc() incorrectly raising TypeError instead of KeyError (GH29189)
Float64Index.get_loc()
KeyError
MultiIndex.get_loc() can’t find missing values when input includes missing values (GH19132)
MultiIndex.get_loc()
Bug in Series.__setitem__() incorrectly assigning values with boolean indexer when the length of new data matches the number of True values and new data is not a Series or an np.array (GH30567)
Bug in indexing with a PeriodIndex incorrectly accepting integers representing years, use e.g. ser.loc["2007"] instead of ser.loc[2007] (GH30763)
ser.loc["2007"]
ser.loc[2007]
Constructor for MultiIndex verifies that the given sortorder is compatible with the actual lexsort_depth if verify_integrity parameter is True (the default) (GH28735)
sortorder
lexsort_depth
verify_integrity
Series and MultiIndex .drop with MultiIndex raise exception if labels not in given in level (GH8594)
read_csv() now accepts binary mode file buffers when using the Python csv engine (GH23779)
Bug in DataFrame.to_json() where using a Tuple as a column or index value and using orient="columns" or orient="index" would produce invalid JSON (GH20500)
orient="columns"
orient="index"
Improve infinity parsing. read_csv() now interprets Infinity, +Infinity, -Infinity as floating point values (GH10065)
+Infinity
Bug in DataFrame.to_csv() where values were truncated when the length of na_rep was shorter than the text input data. (GH25099)
DataFrame.to_csv()
Bug in DataFrame.to_string() where values were truncated using display options instead of outputting the full content (GH9784)
Bug in DataFrame.to_json() where a datetime column label would not be written out in ISO format with orient="table" (GH28130)
orient="table"
Bug in DataFrame.to_parquet() where writing to GCS would fail with engine=’fastparquet’ if the file did not already exist (GH28326)
Bug in read_hdf() closing stores that it didn’t open when Exceptions are raised (GH28699)
read_hdf()
Bug in DataFrame.read_json() where using orient="index" would not maintain the order (GH28557)
DataFrame.read_json()
Bug in DataFrame.to_html() where the length of the formatters argument was not verified (GH28469)
formatters
Bug in DataFrame.read_excel() with engine='ods' when sheet_name argument references a non-existent sheet (GH27676)
DataFrame.read_excel()
engine='ods'
sheet_name
Bug in pandas.io.formats.style.Styler() formatting for floating values not displaying decimals correctly (GH13257)
pandas.io.formats.style.Styler()
Bug in DataFrame.to_html() when using formatters=<list> and max_cols together. (GH25955)
formatters=<list>
max_cols
Bug in Styler.background_gradient() not able to work with dtype Int64 (GH28869)
Int64
Bug in DataFrame.to_clipboard() which did not work reliably in ipython (GH22707)
DataFrame.to_clipboard()
Bug in read_json() where default encoding was not set to utf-8 (GH29565)
read_json()
utf-8
Bug in PythonParser where str and bytes were being mixed when dealing with the decimal field (GH29650)
PythonParser
read_gbq() now accepts progress_bar_type to display progress bar while the data downloads. (GH29857)
progress_bar_type
Bug in pandas.io.json.json_normalize() where a missing value in the location specified by record_path would raise a TypeError (GH30148)
pandas.io.json.json_normalize()
read_excel() now accepts binary data (GH15914)
Bug in read_csv() in which encoding handling was limited to just the string utf-16 for the C engine (GH24130)
Bug in Series.plot() not able to plot boolean values (GH23719)
Bug in DataFrame.plot() not able to plot when no rows (GH27758)
Bug in DataFrame.plot() producing incorrect legend markers when plotting multiple series on the same axis (GH18222)
Bug in DataFrame.plot() when kind='box' and data contains datetime or timedelta data. These types are now automatically dropped (GH22799)
kind='box'
Bug in DataFrame.plot.line() and DataFrame.plot.area() produce wrong xlim in x-axis (GH27686, GH25160, GH24784)
DataFrame.plot.line()
DataFrame.plot.area()
Bug where DataFrame.boxplot() would not accept a color parameter like DataFrame.plot.box() (GH26214)
DataFrame.boxplot()
color
DataFrame.plot.box()
Bug in the xticks argument being ignored for DataFrame.plot.bar() (GH14119)
xticks
DataFrame.plot.bar()
set_option() now validates that the plot backend provided to 'plotting.backend' implements the backend when the option is set, rather than when a plot is created (GH28163)
set_option()
'plotting.backend'
DataFrame.plot() now allow a backend keyword argument to allow changing between backends in one session (GH28619).
backend
Bug in color validation incorrectly raising for non-color styles (GH29122).
Allow DataFrame.plot.scatter() to plot objects and datetime type data (GH18755, GH30391)
DataFrame.plot.scatter()
objects
Bug in DataFrame.hist(), xrot=0 does not work with by and subplots (GH30288).
xrot=0
by
Bug in core.groupby.DataFrameGroupBy.apply() only showing output from a single group when function returns an Index (GH28652)
core.groupby.DataFrameGroupBy.apply()
Bug in DataFrame.groupby() with multiple groups where an IndexError would be raised if any group contained all NA values (GH20519)
Bug in pandas.core.resample.Resampler.size() and pandas.core.resample.Resampler.count() returning wrong dtype when used with an empty Series or DataFrame (GH28427)
pandas.core.resample.Resampler.size()
pandas.core.resample.Resampler.count()
Bug in DataFrame.rolling() not allowing for rolling over datetimes when axis=1 (GH28192)
DataFrame.rolling()
axis=1
Bug in DataFrame.rolling() not allowing rolling over multi-index levels (GH15584).
Bug in DataFrame.rolling() not allowing rolling on monotonic decreasing time indexes (GH19248).
Bug in DataFrame.groupby() not offering selection by column name when axis=1 (GH27614)
Bug in core.groupby.DataFrameGroupby.agg() not able to use lambda function with named aggregation (GH27519)
core.groupby.DataFrameGroupby.agg()
Bug in DataFrame.groupby() losing column name information when grouping by a categorical column (GH28787)
Remove error raised due to duplicated input functions in named aggregation in DataFrame.groupby() and Series.groupby(). Previously error will be raised if the same function is applied on the same column and now it is allowed if new assigned names are different. (GH28426)
Series.groupby()
core.groupby.SeriesGroupBy.value_counts() will be able to handle the case even when the Grouper makes empty groups (GH28479)
core.groupby.SeriesGroupBy.value_counts()
Grouper
Bug in core.window.rolling.Rolling.quantile() ignoring interpolation keyword argument when used within a groupby (GH28779)
core.window.rolling.Rolling.quantile()
interpolation
Bug in DataFrame.groupby() where any, all, nunique and transform functions would incorrectly handle duplicate column labels (GH21668)
any
all
nunique
Bug in core.groupby.DataFrameGroupBy.agg() with timezone-aware datetime64 column incorrectly casting results to the original dtype (GH29641)
core.groupby.DataFrameGroupBy.agg()
Bug in DataFrame.groupby() when using axis=1 and having a single level columns index (GH30208)
Bug in DataFrame.groupby() when using nunique on axis=1 (GH30253)
Bug in GroupBy.quantile() with multiple list-like q value and integer column names (GH30289)
GroupBy.quantile()
Bug in GroupBy.pct_change() and core.groupby.SeriesGroupBy.pct_change() causes TypeError when fill_method is None (GH30463)
GroupBy.pct_change()
core.groupby.SeriesGroupBy.pct_change()
fill_method
Bug in DataFrame.apply() that caused incorrect output with empty DataFrame (GH28202, GH21959)
Bug in DataFrame.stack() not handling non-unique indexes correctly when creating MultiIndex (GH28301)
DataFrame.stack()
Bug in pivot_table() not returning correct type float when margins=True and aggfunc='mean' (GH24893)
pivot_table()
float
margins=True
aggfunc='mean'
Bug merge_asof() could not use datetime.timedelta for tolerance kwarg (GH28098)
merge_asof()
datetime.timedelta
tolerance
Bug in merge(), did not append suffixes correctly with MultiIndex (GH28518)
qcut() and cut() now handle boolean input (GH20303)
qcut()
Fix to ensure all int dtypes can be used in merge_asof() when using a tolerance value. Previously every non-int64 type would raise an erroneous MergeError (GH28870).
MergeError
Better error message in get_dummies() when columns isn’t a list-like value (GH28383)
get_dummies()
Bug in Index.join() that caused infinite recursion error for mismatched MultiIndex name orders. (GH25760, GH28956)
Index.join()
Bug Series.pct_change() where supplying an anchored frequency would throw a ValueError (GH28664)
Bug where DataFrame.equals() returned True incorrectly in some cases when two DataFrames had the same columns in different orders (GH28839)
DataFrame.equals()
Bug in DataFrame.replace() that caused non-numeric replacer’s dtype not respected (GH26632)
Bug in melt() where supplying mixed strings and numeric values for id_vars or value_vars would incorrectly raise a ValueError (GH29718)
melt()
id_vars
value_vars
Dtypes are now preserved when transposing a DataFrame where each column is the same extension dtype (GH30091)
Bug in merge_asof() merging on a tz-aware left_index and right_on a tz-aware column (GH29864)
left_index
right_on
Improved error message and docstring in cut() and qcut() when labels=True (GH13318)
Bug in missing fill_na parameter to DataFrame.unstack() with list of levels (GH30740)
DataFrame.unstack()
Bug in SparseDataFrame arithmetic operations incorrectly casting inputs to float (GH28107)
Bug in DataFrame.sparse returning a Series when there was a column named sparse rather than the accessor (GH30758)
DataFrame.sparse
sparse
Bug in arrays.PandasArray when setting a scalar string (GH28118, GH28150).
arrays.PandasArray
Bug where nullable integers could not be compared to strings (GH28930)
Bug where DataFrame constructor raised ValueError with list-like data and dtype specified (GH30280)
Trying to set the display.precision, display.max_rows or display.max_columns using set_option() to anything but a None or a positive int will raise a ValueError (GH23348)
display.precision
display.max_rows
display.max_columns
Using DataFrame.replace() with overlapping keys in a nested dictionary will no longer raise, now matching the behavior of a flat dictionary (GH27660)
DataFrame.to_csv() and Series.to_csv() now support dicts as compression argument with key 'method' being the compression method and others as additional compression options when the compression method is 'zip'. (GH26023)
Series.to_csv()
compression
'method'
'zip'
Bug in Series.diff() where a boolean series would incorrectly raise a TypeError (GH17294)
Series.diff()
Series.append() will no longer raise a TypeError when passed a tuple of Series (GH28410)
Series.append()
Fix corrupted error message when calling pandas.libs._json.encode() on a 0d array (GH18878)
pandas.libs._json.encode()
Backtick quoting in DataFrame.query() and DataFrame.eval() can now also be used to use invalid identifiers like names that start with a digit, are python keywords, or are using single character operators. (GH27017)
DataFrame.query()
DataFrame.eval()
Bug in pd.core.util.hashing.hash_pandas_object where arrays containing tuples were incorrectly treated as non-hashable (GH28969)
pd.core.util.hashing.hash_pandas_object
Bug in DataFrame.append() that raised IndexError when appending with empty list (GH28769)
Fix AbstractHolidayCalendar to return correct results for years after 2030 (now goes up to 2200) (GH27790)
AbstractHolidayCalendar
Fixed IntegerArray returning inf rather than NaN for operations dividing by 0 (GH27398)
inf
0
Fixed pow operations for IntegerArray when the other value is 0 or 1 (GH29997)
pow
1
Bug in Series.count() raises if use_inf_as_na is enabled (GH29478)
Series.count()
Bug in Index where a non-hashable name could be set without raising TypeError (GH29069)
Bug in DataFrame constructor when passing a 2D ndarray and an extension dtype (GH12513)
Bug in DataFrame.to_csv() when supplied a series with a dtype="string" and a na_rep, the na_rep was being truncated to 2 characters. (GH29975)
dtype="string"
Bug where DataFrame.itertuples() would incorrectly determine whether or not namedtuples could be used for dataframes of 255 columns (GH28282)
DataFrame.itertuples()
Handle nested NumPy object arrays in testing.assert_series_equal() for ExtensionArray implementations (GH30841)
testing.assert_series_equal()
Bug in Index constructor incorrectly allowing 2-dimensional input arrays (GH13601, GH27125)
A total of 303 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Aaditya Panikath +
Abdullah İhsan Seçer
Abhijeet Krishnan +
Adam J. Stewart
Adam Klaum +
Addison Lynch
Aivengoe +
Alastair James +
Albert Villanova del Moral
Alex Kirko +
Alfredo Granja +
Allen Downey
Alp Arıbal +
Andreas Buhr +
Andrew Munch +
Andy
Angela Ambroz +
Aniruddha Bhattacharjee +
Ankit Dhankhar +
Antonio Andraues Jr +
Arda Kosar +
Asish Mahapatra +
Austin Hackett +
Avi Kelman +
AyowoleT +
Bas Nijholt +
Ben Thayer
Bharat Raghunathan
Bhavani Ravi
Bhuvana KA +
Big Head
Blake Hawkins +
Bobae Kim +
Brett Naul
Brian Wignall
Bruno P. Kinoshita +
Bryant Moscon +
Cesar H +
Chris Stadler
Chris Zimmerman +
Christopher Whelan
Clemens Brunner
Clemens Tolboom +
Connor Charles +
Daniel Hähnke +
Daniel Saxton
Darin Plutchok +
Dave Hughes
David Stansby
DavidRosen +
Dean +
Deepan Das +
Deepyaman Datta
DorAmram +
Dorothy Kabarozi +
Drew Heenan +
Eliza Mae Saret +
Elle +
Endre Mark Borza +
Eric Brassell +
Eric Wong +
Eunseop Jeong +
Eyden Villanueva +
Felix Divo
ForTimeBeing +
Francesco Truzzi +
Gabriel Corona +
Gabriel Monteiro +
Galuh Sahid +
Georgi Baychev +
Gina
GiuPassarelli +
Grigorios Giannakopoulos +
Guilherme Leite +
Guilherme Salomé +
Gyeongjae Choi +
Harutaka Kawamura +
Hassan Kibirige
Hielke Walinga
Hubert
Hugh Kelley +
Ian Eaves +
Ignacio Santolin +
Igor Filippov +
Irv Lustig
Isaac Virshup +
Ivan Bessarabov +
JMBurley +
Jack Bicknell +
Jacob Buckheit +
Jan Koch
Jan Pipek +
Jan Škoda +
Jan-Philip Gehrcke
Jasper J.F. van den Bosch +
Javad +
Jeff Reback
Jeremy Schendel
Jeroen Kant +
Jesse Pardue +
Jethro Cao +
Jiang Yue
Jiaxiang +
Jihyung Moon +
Jimmy Callin
Jinyang Zhou +
Joao Victor Martinelli +
Joaq Almirante +
John G Evans +
John Ward +
Jonathan Larkin +
Joris Van den Bossche
Josh Dimarsky +
Joshua Smith +
Josiah Baker +
Julia Signell +
Jung Dong Ho +
Justin Cole +
Justin Zheng
Kaiqi Dong
Karthigeyan +
Katherine Younglove +
Katrin Leinweber
Kee Chong Tan +
Keith Kraus +
Kevin Nguyen +
Kevin Sheppard
Kisekka David +
Koushik +
Kyle Boone +
Kyle McCahill +
Laura Collard, PhD +
LiuSeeker +
Louis Huynh +
Lucas Scarlato Astur +
Luiz Gustavo +
Luke +
Luke Shepard +
MKhalusova +
Mabel Villalba
Maciej J +
Mak Sze Chun
Manu NALEPA +
Marc
Marc Garcia
Marco Gorelli +
Marco Neumann +
Martin Winkel +
Martina G. Vilas +
Mateusz +
Matthew Roeschke
Matthew Tan +
Max Bolingbroke
Max Chen +
Miguel +
MinGyo Jung +
Mohamed Amine ZGHAL +
Mohit Anand +
MomIsBestFriend +
Naomi Bonnin +
Nathan Abel +
Nico Cernek +
Nigel Markey +
Noritada Kobayashi +
Oktay Sabak +
Oliver Hofkens +
Oluokun Adedayo +
Osman +
Oğuzhan Öğreden +
Pandas Development Team +
Patrik Hlobil +
Paul Lee +
Paul Siegel +
Petr Baev +
Pietro Battiston
Prakhar Pandey +
Puneeth K +
Raghav +
Rajat +
Rajhans Jadhao +
Rajiv Bharadwaj +
Roei.r
Rohit Sanjay +
Ronan Lamy +
Roshni +
Roymprog +
Rushabh Vasani +
Ryan Grout +
Ryan Nazareth
Samesh Lakhotia +
Samuel Sinayoko
Samyak Jain +
Sarah Donehower +
Sarah Masud +
Saul Shanabrook +
Scott Cole +
SdgJlbl +
Seb +
Sergei Ivko +
Shadi Akiki
Shorokhov Sergey
Siddhesh Poyarekar +
Sidharthan Nair +
Simon Gibbons
Simon Hawkins
Simon-Martin Schröder +
Sofiane Mahiou +
Sourav kumar +
Souvik Mandal +
Soyoun Kim +
Sparkle Russell-Puleri +
Srinivas Reddy Thatiparthy (శ్రీనివాస్ రెడ్డి తాటిపర్తి)
Stuart Berg +
Sumanau Sareen
Szymon Bednarek +
Tambe Tabitha Achere +
Tan Tran
Tang Heyi +
Tanmay Daripa +
Tanya Jain
Terji Petersen
Thomas Li +
Tirth Jain +
Tola A +
Tom Augspurger
Tommy Lynch +
Tomoyuki Suzuki +
Tony Lorenzo
Unprocessable +
Uwe L. Korn
Vaibhav Vishal
Victoria Zdanovskaya +
Vijayant +
Vishwak Srinivasan +
WANG Aiyong
Wenhuan
Wes McKinney
Will Ayd
Will Holmgren
William Ayd
William Blan +
Wouter Overmeire
Wuraola Oyewusi +
YaOzI +
Yash Shukla +
Yu Wang +
Yusei Tahara +
alexander135 +
alimcmaster1
avelineg +
bganglia +
bolkedebruin
bravech +
chinhwee +
cruzzoe +
dalgarno +
daniellebrown +
danielplawrence
est271 +
francisco souza +
ganevgv +
garanews +
gfyoung
h-vetinari
hasnain2808 +
ianzur +
jalbritt +
jbrockmendel
jeschwar +
jlamborn324 +
joy-rosie +
kernc
killerontherun1
krey +
lexy-lixinyu +
lucyleeow +
lukasbk +
maheshbapatu +
mck619 +
nathalier
naveenkaushik2504 +
nlepleux +
nrebena
ohad83 +
pilkibun
pqzx +
proost +
pv8493013j +
qudade +
rhstanton +
rmunjal29 +
sangarshanan +
sardonick +
saskakarsi +
shaido987 +
ssikdar1
steveayers124 +
tadashigaki +
timcera +
tlaytongoogle +
tobycheese
yogendrasoni +
zys5945 +